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of vibrating air. The inner ear converts the stream of 
input into spike trains in the auditory nerve, and the 
receiver’s brain somehow discovers (or imposes) seg-
ments in the input, recognizes segments as members of 
a category (phonemes, syllables, words), recognizes 
relations between segments in the input, assigns mean-
ing to them, and decides  whether the input is well- 
formed, incomplete, or ungrammatical.

In modeling the neural and cognitive pro cesses 
involved in interpreting a spoken utterance (and simi-
larly, in production, acquisition, and evolution of writ-
ten or signed languages), modelers have to make a 
series of choices and simplify the unorderly, complex 
real ity. Do we focus on the physical real ity of the speech 
signal, on the neural real ity of pro cessing in the brain, 
or on the psychological real ity of understanding a 
received message? The dif fer ent research traditions 
reviewed in the previous chapters— including symbolic 
and neural network modeling paradigms that are often 
presented as incompatible— start from dif fer ent answers 
to  these questions.

For instance, the models of syntax and sentence pro-
cessing reviewed in Demberg and Keller (chapter 22 of 
this volume), as well as many of the models of language 
generation reviewed in Krahmer (chapter  25) take 
abstract syntactic categories and hierarchical structure 
as a starting point, while greatly simplifying the nature 
of the signals. The vari ous neural network models dis-
cussed in Frank, Monaghan, and Tsoukala (chapter 21) 
and Zuidema and Le (chapter 23), on the other hand, 
aim to account for how the empirical observations of 
linguistic be hav ior, with what at least to some extent 
looks like discrete categories and hierarchy, might 
emerge from the interaction between nodes with con-
tinuous activation values in a network. The work dis-
cussed in Wehbe, Fyshe, and Mitchell (chapter  24), 
then, addresses explic itly the relation of  these kind of 
models with detectable activity in the  human brain. 
Fi nally, the models of speech production and the vocal 

Computer programming and mathe matics are not typi-
cally major components of educational programs in lin-
guistics, and modeling papers only constitute a small 
fraction of the scientific lit er a ture that addresses the 
nature of languages and the cognitive apparatus to learn 
and use them. Nevertheless, it is striking how central 
mathematical and computational models have been and 
continue to be in many of the big debates in the lan-
guage sciences, including  those about the nature of the 
cognitive repre sen ta tions under lying language (such as 
discussed, for instance, in the “past tense debate”; see 
Pinker & Ullman, 2002, and references therein), innate-
ness (e.g., Elman, Bates, & Johnson, 1998), learnability 
(e.g., Johnson, 2004), language change (e.g., Gray & 
Atkinson, 2003) and language evolution (e.g., Fitch, de 
Boer, Mathur, & Ghazanfar, 2016).

This central role of modeling in many dif fer ent debates 
raises a number of questions, including: (a) why are  there 
so many alternative schools of thought in modeling? 
(b) What are the advantages and attractions of modeling 
approaches that enable them to be taken so seriously? 
And (c) why has modeling, despite  these advantages, not 
led to more consensus? In this closing chapter of the 
part Modeling Language, we  will briefly consider  these 
questions. We start describing the  great variety of mod-
eling approaches, as evidenced in the previous chapters 
and elsewhere. We  will then highlight the advantages of 
having such a rich modeling toolbox at our disposal and 
discuss some of the inherent and some of the more easily 
avoidable  causes of disagreement. We end with a number 
of suggestions for ways forward, including more system-
atic research on model comparison and a focus on devel-
oping models of the neurobiological basis of language.

1. Why Are  There So Many Dif fer ent Modeling 
Paradigms?

The primary medium of language is speech. Spoken 
utterances arrive at the ears of the receiver as patterns 
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instance, Demberg and Keller discuss garden path 
effects and related difficulties in language pro cessing; 
the many models that have been developed to account 
for  these difficulties have given increasingly precise 
characterizations of previously multi- interpretable 
notions such as “incompatibility,” “reanalysis,” and 
“semantic plausibility.”

 There is also a long tradition of using formal models 
to automatically generate predictions. In phonology, 
morphology, and syntax, the key paradigm of “genera-
tive linguistics” even reflects this feature in its name: it 
is named  after a style of model building that is genera-
tive, that is, the automatic generation of new linguistic 
items that can be tested against native speaker intu-
ition. A very dif fer ent example can be found in Wehbe, 
Fyshe, and Mitchell, where neural networks are used 
to predict brain activation given a linguistic stimulus. 
Although the math for computing the activation of 
each individual node in  these neural networks, and for 
updating the weights on connections between nodes, 
are well understood, obtaining the full prediction 
would be unfeasible without the automation that the 
implementation of computational models bring.

3. Why Has Modeling, Despite  These Advantages, 
Not Led to More Consensus?

The answer to our third question, about continuing 
controversy, is more complex, and, ironically, more 
controversial— even the two authors of this chapter 
point to dif fer ent  causes for the ongoing controversies. 
Some of the disagreement about what the right model-
ing framework is, is unavoidable, due to the vastly dif-
fer ent goals and interests of modelers. But some of the 
disagreements can be traced back to confusions among 
modelers themselves.

The first author of this chapter points to one par tic-
u lar cause of confusion that can be called “mission 
creep”: The original goals of a modeling framework 
are gradually forgotten and simplifications that might 
have been defensible in  earlier versions become prob-
lematic when models are repurposed to answer new 
questions. Impor tant areas where we think mission 
creep plays a role, in many dif fer ent subdomains of 
the language sciences, are the issues of how to deal 
with time (in par tic u lar  whether and how to abstract 
out the time dimension),  whether and how to convert 
the continuous physical signal into discrete objects, 
and how to represent structure in the input stream or 
sequence of units, including what could be called 
combinatorial structure, hierarchical structure, and/
or slot- filler structure.

tract reviewed in de Boer (chapter 20), stay close to the 
physical signal.

 These chapters already cover an enormous variety of 
approaches, but the variety of modeling paradigms is 
even larger than we have been able to represent in the 
chapters of part IV. One prominent framework not cov-
ered is that of Bayesian modeling.1 Typically, Bayesian 
models are “rational” models, informing researchers 
about the optimal strategy  under the assumed levels of 
uncertainty, without making direct claims about the 
 actual cognitive pro cesses that  humans use.  These 
models thus represent yet another idealization, orthog-
onal to the ones we already discussed (a good introduc-
tion of such Bayesian rational models, applied to the 
domain of language acquisition, can be found in Pearl & 
Goldwater, 2016).

We conclude that the  great variety of modeling 
approaches that can be identified in language and 
speech research is to a large extent the unavoidable 
consequence of (a) the enormous complexity of lan-
guage and speech pro cessing, in combination with (b) 
the necessity of explanatory modeling to simplify. This 
richness could be an asset for research on language 
and speech, and rather than interpreting alternative 
models as rival accounts of language cognition, we 
would like to stress their complementary strengths. Dif-
ferences among modeling paradigms are best viewed as 
dif fer ent but defensible hard choices on simplifications 
necessary to reach a deeper understanding of how lan-
guage and cognition work.

2. What Are the Advantages and Attractions of 
Modeling Approaches That Enable Them to Be 
Taken So Seriously?

Our second question concerns the advantages of models 
that have given them their prominent role in the cogni-
tive and language sciences. An impor tant part of the 
answer to this question is again the overwhelming com-
plexity of speech and language. With so many interact-
ing components, and so many crucial simplifications to 
keep track of, researchers need tools to clarify exactly 
what component in a theory plays what role, where, and 
when, and moreover they need tools to help derive 
(potentially counterintuitive) consequences of given 
assumptions.

The formalization and automation that computa-
tional models bring provide exactly  these tools.  There 
are endlessly many examples of models of speech and 
language that illustrate that formalization forces 
researchers to make theories much more precise, and 
as a result easier to criticize (which is a good  thing). For 
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Clearly, however, any finite set of pro cessing data can 
be captured by an infinity of formalisms,  limited only be 
the imagination of the modeler. Thus, the choice 
between computational primitives, memory compo-
nents, repre sen ta tional spaces, input encodings, learn-
ing algorithms, and such, is largely unconstrained. This 
toolbox approach to data recoding has yielded a vast 
array of distinct models that are based on dif fer ent 
assumptions and abstractions. As a consequence, they 
are often difficult to compare, and rarely has it been 
pos si ble to decide between architectures in a principled 
way. As we  will discuss in section 4, apart from behav-
ioral data, the neurobiology of the  human language 
system provides a rich set of constraints that can inform 
the design of computational language models.

4. Ways Forward

The recommendations for the ways forward of the field 
“models of language” depend on the diagnosis. For the 
diagnosis “mission creep,” the key issue is to continu-
ously reevaluate the simplifications made, including 
implicit simplifications that modelers are hardly aware 
off. The remedy we recommend is a model comparison 
approach, where we develop very dif fer ent models for 
the same phenomenon, using very dif fer ent modeling 
paradigms and, through careful comparison, highlight 
the role of simplifications made.

For the diagnosis “lack of constraints,” the key issue 
is to identify underappreciated sources of constraints 
that stem from characterizing the system itself. We 
argue that more attention should be paid to the neuro-
biological basis of language: models should be 
informed, first and foremost, by the properties of the 
neurobiological infrastructure that supports language 
and speech pro cessing. We refer to this approach as 
causal modeling (Fitz et al., 2019).

4.1. Model Comparison Model comparison in the 
broad sense is standard practice in the modeling 
 lit er a ture— every new version of a model is compared 
with an  earlier version— but this broad sense is not 
what we have in mind  here. Rather, we argue that mod-
elers of language and speech should more often sys-
tematically compare models from very dif fer ent 
modeling paradigms for the same phenomenon: spik-
ing networks versus rate- coding networks, logic- based 
models of inference versus recursive neural networks 
(e.g., Bowman, Potts, & Manning, 2015), formal 
grammar- based models of grammaticality versus recur-
rent neural networks (e.g., Gulordava, Bojanowski, 
Grave, Linzen, & Baroni, 2018). Such cross- paradigm 

For instance, consider the practice of abstracting out 
time in neural network models, such as  those discussed 
in the preceding chapters.  These models are all so- 
called rate- coding networks: the “neurons” in  these 
networks take continuous values, often between −1.0 
and +1.0, representing the degree of activity of a single 
neuron or a group of neurons over a certain time win-
dow. The networks are typically or ga nized in layers, 
and layers are updated one  after the other, but all neu-
rons in one layer in one go (“synchronous updating”; 
this implicitly imposes a global clock that regulates 
layer- by- layer updating). The exact timing of spikes, 
differences in oscillation phases, bursting, and other 
temporal relations between neurons are thus not repre-
sented in  these models.

But time and timing are central to the study of lan-
guage pro cessing, which is reflected in many depen-
dent mea sures used in psycholinguistics (e.g., reading 
and reaction times, fixation and regression in eye 
tracking, temporal characteristics of electroenceopha-
lography and magnetoencephalography signals). To 
put time back into the models, a standard approach is 
to make the networks recurrent (Elman, 1990), but the 
relation between model time in recurrent networks and 
physical time in the systems they are meant to model is 
largely lost.

All this can still be a legitimate simplification, depend-
ing on the research questions. However, the simplifica-
tion becomes problematic when the mission of modelers 
shifts away from providing an existence proof that neu-
ral networks can discover some structure in sentences 
(Elman, 1990) to questions that directly involve the way 
the  human brain keeps track of time or to questions 
about supposed fundamental inabilities of neural net-
works. One example of the latter can be found in the 
lit er a ture on the “binding prob lem” in neural net-
works (see Kiela, 2011, for a discussion that requires 
more space than we have  here); models that aim to 
solve the binding prob lem are forced to change the 
way time is represented, such that for instance binding- 
by- synchrony, or other uses of temporal information, 
become available.

The second author of this chapter emphasizes 
another source of confusion, which can be labeled 
“lack of constraints.” Dif fer ent computational model-
ing approaches— whether they are connectionist, sym-
bolic, Bayesian, or other— have primarily been 
concerned with modeling the output of the language 
system, rather than the system itself. The aim of this 
approach is to redescribe speech and language pro-
cessing data using some formalism or computational 
mechanism.
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A causal modeling approach, on the other hand, 
starts out at the implementational level of description 
and attempts to synthesize language function in the 
brain from first princi ples.  These include, for instance, 
the princi ple of state- dependence (Buonomano & 
Maass, 2009) and the princi ple of information pro-
cessing as computation over high- dimensional 
transients (Ra bino vich, Huerta, & Laurent, 2008). 
Moreover, causal modeling attempts to capture the 
characteristics of the biophysical system itself, rather 
than to reproduce a par tic u lar aspect of be hav ior. The 
aim is to understand, through simulation and theoreti-
cal insight, how neural computation and memory in 
cortical cir cuits support language be hav ior. The extent 
to which a causal model approximates the neurobio-
logical infrastructure of the real system determines 
how humanlike it  will behave. Reproduction of be hav ior, 
however, is viewed as an in de pen dent outcome, not the 
primary goal of modeling.

Causal models also differ from models of be hav ior in 
that par ameters have physical units of mea sure ment 
that need to fall within physiological bounds. This 
places strong constraints on the model space and 
reduces degrees of freedom. In addition, many of the 
arbitrary design choices in models of be hav ior turn 
into empirical questions (see, e.g., Bartol et al., 2015). 
While models of be hav ior often attempt to fit data with 
as few par ameters as pos si ble, the challenge for causal 
models is to deal with the abundance of par ameters 
provided by the neurobiological system (e.g., ~1014 syn-
aptic conductances).

Also the issue of time, which we discussed in sec-
tion  3, can be dealt with from the causal modeling 
perspective.  Here, network time corresponds to real 
physical time, since it arises from biophysical models of 
spike generation and the dynamics of synaptic trans-
mission (Gerstner, Kistler, Naud, & Paninski, 2014). 
Due to this nomological relation, causal models allow 
us, in princi ple, to investigate how language and speech 
pro cessing unfold over time at any desired grain size 
(e.g., on a millisecond scale).

Taking a causal modeling approach to language does 
not mean that we  ought to replicate the neurobiological 
substrate at all levels of detail. Even causal models can 
(and should) be high- level abstractions of the under-
lying physiology in that they are composed of mathemat-
ically reduced but phenomenologically adequate parts. 
Many such parts have been described in computational 
neuroscience, for instance, the adaptive- exponential 
neuron (Brette & Gerstner, 2005), models of short- term 
synaptic facilitation and depression (Markram, Wang, & 
Tsodyks, 1998), mechanisms of homeostatic plasticity 

comparisons require taking both paradigms seriously, 
but they shed light on the implicit and explicit assump-
tions that both paradigms embody and thus yield an 
opportunity to reevaluate  those assumptions.

An early example of such cross- paradigm compari-
sons yielding impor tant insights is the discovery that 
context- free grammars, push- down automata, and aug-
mented transition networks are  really alternative ways 
at pro cessing context- free languages and can be trans-
lated into each other. Another is the series of discover-
ies made about the relation between rival syntactic 
frameworks, including the finding that minimalism, 
combinatory categorical grammar, and lexicalized tree 
adjoining grammar have essentially the same binding 
theory (Steedman & Baldridge, 2011). Zuidema (2003) 
provided another example, implementing the differ-
ential equation model of Nowak, Komarova, and 
Niyogi (2001) in an agent- based simulation. Detailed 
comparison of the two models revealed that Nowak 
et al.’s result of the necessity of a finite and small size 
of the number of pos si ble grammars (the “size of Uni-
versal Grammar”) was crucially dependent on the 
problematic assumption of a uniform probability dis-
tribution over pos si ble grammars that the learner is 
exposed to.

All  these examples illustrate the benefits of seriously 
comparing models from dif fer ent modeling traditions, 
accounting for the same phenomenon: Some disagree-
ments dis appear, as the supposed contradictions dis-
appear on closer inspection. Other disagreements 
might remain, but are traced back to differences in 
more fundamental assumptions.

4.2. Causal Modeling  Human language is a neuro-
biological system implemented as a sparsely connected, 
recurrently coupled network of highly dynamic neu-
rons and synapses. Existing computational models of 
language pro cessing have made  little or no contact 
with the detailed biophysical properties of this system 
and have focused mainly on the reproduction of behav-
ioral data.

Models of be hav ior start at the computational or 
algorithmic level of description (in the terminology of 
David Marr) and attempt to reverse engineer the lan-
guage system from input- output relations. Recent 
experimental work, however, has shown that it is diffi-
cult to reverse engineer even  simple computational sys-
tems (e.g., a micropro cessor) whose functionality is 
completely known (Jonas & Kording, 2017). This meth-
odological issue is exacerbated with increased system 
complexity and the noisiness of mea sure ments made 
from the  human language system.
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(Vogels, Sprekeler, Zenke, Clopath, & Gerstner, 2011), 
long- term potentiation (Clopath, Büsing, Vasilaki, & 
Gerstner, 2010), and princi ples of synaptic consolidation 
(Clopath, Ziegler, Vasilaki, Büsing, & Gerstner, 2008). 
Using  these experimentally validated components 
ensures that models  will gradually begin to approximate 
the dynamic properties of the  human language system.

As this chapter has attempted to highlight, it has 
been difficult to unify computational approaches to 
language and speech pro cessing into a coherent frame-
work. On the view outlined  here, we should strive to 
replace data modeling by models of the neurobiologi-
cal language system itself. This would mark a much 
needed paradigm shift in computational language 
modeling. The long- term goal of this approach is not to 
describe pro cessing in terms of interacting neurons 
and synapses, but to distill an algorithmic abstraction 
from the neurobiological substrate that characterizes 
cognitive function.

 There are many challenges involved in causal lan-
guage modeling. For instance, complex networks of 
spiking neurons with plastic synapses are computation-
ally costly to simulate, and their be hav ior is often diffi-
cult to interpret.  These challenges can be overcome 
through the development of suitable neuromorphic 
architectures, novel approaches such as event- driven 
simulation, and large- scale team efforts to analyze and 
understand the computational role of component parts 
through model comparisons. Eventually, this approach 
might be able to bridge descriptions of brain function 
across all levels of explanation (Carandini, 2012) and 
yield a causal, mechanistic understanding of the 
 human capacity for language.

NOTE

 1. Models in the Bayesian framework define probability 
distributions over potentially quite rich structures (rang-
ing from phonetic structure, as in de Boer, to syntactic 
structure, as in Demberg & Keller). The probability distri-
butions are defined indirectly, by setting up a stochastic 
pro cess (a “generative model”) that generates the linguis-
tic structures of interest. Using a rich toolbox of computa-
tional techniques, the probability distribution over pos si ble 
data is used to compute the probability of observed data 
given a model and, using Bayes’ law, to find the model or 
models that make the data maximally probable.
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